
F. Theory Supplement

Here we derive Eqs. (1)-(3) in Fig. 2G of the main text, showing how the main sources of
technical noise encountered in inDrop RNA sequencing and other transcriptomic methods
affect gene expression variability and correlations observed in single cell sequencing data.
We develop a statistical test based on the results presented here to identify highly variable
genes.

F.1 A model for technical noise

Let ni be the number of mRNA molecules in a given cell that correspond to a particu-
lar gene i, with a distribution Pbio(ni) across all cells being analyzed. Also, let mi be the
number of UMI-filtered mapped (UMIFM) sequencing reads mapping to the same gene i,
with distribution Pobs(mi) obtained from the sequencing run. Ultimately we want to use the
distribution of UMIFM reads Pobs(mi) to infer properties of Pbio(ni) such as its average E[ni],
its variance Var(ni), its coefficient of variation CVi =

√
Var(ni)/E[ni], and its modality. We

also want to infer properties of the joint distributions of multiple genes – for example, the
strength of the correlation between gene i and gene j, which we can calculate from the pair-
wise distributions Pbio(ni, nj). The challenge in developing a model of noise in single cell
transcriptomics is to explain how the joint distribution of the UMIFM read counts of all genes
Pobs({mi}) relates the joint distribution of the transcript counts of these genes Pbio({ni}).
From Pobs({mi}) we can extract any marginal distribution of interest.

To relate the set of read counts across all genes {mi} to the set of transcript counts {ni},
we start with the chain rule,

Pobs({mi}) =
∑
n

Pbio({ni})
∏
i

Qi(mi|ni), (S1)

where {Qi(mi|ni)} are the conditional probability distributions for observing {mi} UMIFM
reads given {ni} transcripts. The extent to which Pobs({mi}) reflects the biology depends on
the structure of {Qi(mi|ni)}. Note that, implicit in our notation for Qi, we have assumed that
transcripts are sampled independently of one another within each droplet, although there
may be variation between droplets. This assumption is supported by the excellent fit of the
sensitivity curve (Fig. 2E) assuming independent and random sampling of mRNA transcripts
(see Supplementary Methods section on Sensitivity). Thus the number of UMIFM reads mi

for a given gene should depend only on the actual number of transcripts ni for that gene and
not on the number of UMIFM reads mj or transcripts nj for any other gene.

To construct Qi(mi|ni), we consider the type of noise apparent in our system. Previ-
ous studies (Grun et al., 2014; Brennecke et al., 2013; Islam et al., 2014) assumed that
sequenced transcripts are sampled from the pool of all transcripts in a cell according to
Poisson statistics, i.e. through random sampling with replacement. These studies were
motivated by the observation that the majority of genes in a sample follow a Poisson noise
relationship, CV2 ∼ 1/(mean), with a baseline additive technical noise. Here, we make a
subtle correction to these studies by noting that sampling of mRNA transcripts occurs with-
out replacement, giving rise to a Binomial, not Poisson, distribution. A Binomial sampling
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is expected when sequencing depth is sufficient such that the number of reads per cell is
limited only by the capture efficiency of the transcripts; if however the number of sequenced
reads is too low to capture the full complexity of the RNA-Seq library (for example, if the
number of cells sequenced in a single run is very high), the limited number of reads per
cell gives rise to a Hypergeometric distribution instead of a Binomial, but with similar results.
With this correction we are able to show from first principles how a baseline noise arises,
and that it not only additively complements the gene CVs but also multiplicatively amplifies
existing biological variation.

The choice of a Binomial distribution is motivated by the observation that the number
of UMIFM reads mi for a given gene from a given cell can only under-estimate the true
number of transcripts ni. Thus mi is drawn from a Binomial distribution characterized by a
sampling efficiency β corresponding to the probability of any individual mRNA molecule
being sampled. Since β can fluctuate between droplets independently of mi, Qi is the
Binomial distribution marginalized over fluctuations in β, viz.

Qi(mi|ni) =
∫
dβ ξ(β)Bi(mi;ni, β), (S2)

where Bi(mi;ni, β) is the Binomial distribution,

Bi(mi;ni, β) =

(
ni
mi

)
βmi(1− β)ni−mi ,

and ξ(β) is the distribution across droplets of sampling efficiencies β. Note that Eqs. (S1)
and (S2) assume that all transcripts within the same droplet are sampled with the same
efficiency β, which may not be true (for example) if some transcripts within the same cell are
more or less accessible to primer capture than others. These equations also ignore other
sources of noise such as ambiguities in mapping UMIFM reads to genes and rare events in
which two cells are present in the same droplet. Despite these limitations, from Eqs. (S1)
and (S2) one may derive predictions for the observed gene CVs and correlations that agree
well with trends seen in the data, and which provide an intuitive explanation for sources of
variation in the data.

Having laid out the basic structure and assumptions of our noise model, we now use
them to relate variability and correlations in the number of UMIFM reads for genes to those
properties of the actual number of transcripts. We also explore how normalizing the data
affects our results.

F.2 Key results

From the noise model in section F.1, we find that technical noise amplifies existing biolog-
ical variation of a gene’s abundance across cells and weakens correlations between genes.
Here we formalize these intuitive behaviors through equations that relate the biological CV
and pairwise correlation strength with their experimentally observable counterparts.
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F.2.1 Technical noise amplifies above-Poisson biological variation

Equations (S3) and (S4) below present the key relationships describing the observed CV
of gene expression. The first equation holds for unnormalized data; the second equation
refers to data normalized by the total counts per cell (as defined below), with the normalized
UMIFM counts denoted as m̂. The normalization procedure reduces technical noise in the
efficiency β, but it undesirably inflates the CV estimates for each gene by the cell-to-cell
variability in total mRNA content N =

∑
i ni, which may reflect fluctuations in cell size or cell

cycle stage. Eq. (S4) is accurate for genes whose transcript abundances are independent
of the total number of transcripts in a cell, N , an assumption that is almost certainly incorrect
for genes that correlate strongly with the cell cycle. In this section we drop the subscript i
from all equations since they apply to genes individually rather than jointly.

No normalization:

CV2
m −

1

E[m]
=

(
CV2

n −
1

E[n]

)(
1 + CV2

β

)
+CV2

β (S3)

Total count normalization:

CV2
m̂ − (1 + CV2

M )(1 + CV2
1/N )

1

E[m̂]
=

(
CV2

n −
1

E[n]

)(
1 + CV2

1/N

)
+CV2

1/N (S4)

Technical noise is represented in both Eqs. (S3) and (S4) by variability CVβ in the sampling
efficiency of the method. Eq. (S4) includes, as we would expect, variability CVM across cells
or control droplets in the total number of UMIFM counts, M =

∑
imi. Note that M and CVM

are empirical quantities that can be calculated directly from the data. Eq. (S4) also captures
variability in the total number N of mRNA transcripts originally present in those cells, in the
form of CV1/N .

We begin the derivation of Eqs. (S3) and (S4) the same way. Both equations follow
from the Laws of Total Expectation and Total Variance applied to the conditional means and
variances of (normalized) read countsm (m̂), conditioned on the actual number of transcripts
n and the sampling efficiency β. For Binomial sampling, these conditional moments are as
follows:

E[m|n, β] = βn

Var(m|n, β) = β(1− β)n.

We now calculate the unconditional moments E[m] and Var(m) in terms of these conditional
ones using the Laws of Total Expectation and Total Variance:

E[m] = En,β[E[m|n, β]], (S5)

Var(m) = En,β[Var(m|n, β)] + Varn,β(E[m|n, β]), (S6)

where En,β[g(n, β)] = En[Eβ[g(n, β)]] is the expected value of a function g(n, β) over the
distributions of n and β, and V arn,β(g) = En,β[g

2(n, β)]− E2
n,β[g(n, β)]. We obtain:

E[m] = E[β]E[n]

Var(m) = E[β]E[n]− E[β2]E[n] + E[β2]E[n2]− E[β]2E[n]2
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We arrive at Eq. (S3) by evaluating CV2
m = Var(m)/E[m]2 and simplifying the result using

the identity
E[β2]

E[β]2
= 1 + CV2

β.

Next we turn to total count normalization [Eq. (S4)]. In total count normalization, normal-
ized read counts m̂ are calculated in each droplet as follows:

m̂ ≡ mE[M ]

M

where M =
∑

imi is the total number of UMIFM reads (i.e., counts or library size) for a given
cell, and E[M ] is the average of those totals across all cells. Because each transcript count
mi is binomially distributed conditional on β and ni, M is binomially distributed conditional on
β andN =

∑
i ni. SinceN is large, we say thatM in each individual droplet is approximately

its conditional expectation E[M |β,N ] = βN . With this approximation, and taking β and N
to be independent,

m̂ = m
E[β]

β

E[N ]

N
= m

E[β]

β
R (S7)

To simplify subsequent algebra we define the random variable R ≡ E[N ]/N . Proceeding as
before, the conditional moments for m̂ are

E[m̂|n, β,R] =
(
E[β]

β
R

)
E[m|n, β] = E[β]Rn

Var[m̂|n, β,R] =
(
E[β]2

β2
R2

)
Var(m|n, β) = E[β]2(β−1 − 1)R2n.

The quantity Var[m̂|n, β,R] depends on β−1. Using Equation (S6) we conclude that the un-
conditional variance will depend on the inverse moment E

[
β−1

]
, which we can approximate

using a power series expansion,

E
[
β−1

]
=

1

E[β]
E

[
1

1 + (β − E[β])/E[β]

]
=

1

E[β]
E

[ ∞∑
k=0

(−1)k (β − E[β])k

E[β]

]
=

1

E[β]

(
1 + CV2

β

)
+O

(
E[(β − E[β])3]

E[β]3

)
.

In the final line above, we note that the quadratic term in the power series is CV2
β. The higher

order terms depend on the third and higher mean-normalized central moments of β, which
we can safely ignore if the noise in β is small. Armed with this approximation for E

[
β−1

]
,

we find that

E[m̂] = E[β]E[R]E[n] (S8)

Var(m̂) ≈ E[β]E[R2]E[n]
(
1 + CV2

β

)
− E[β]2E[R2]E[n]

+ E[β]2E[R2]E[n2]− E[β]2E[R]2E[n]2. (S9)

Now dividing Eq. (S9) by the square of Eq. (S8) gives

CV2
m̂ −

E[R](1 + CV2
R)(1 + CV2

β)

E[m̂]
=

(
CV2

n −
1

E[n]

)(
1 + CV2

R

)
+CV2

R

20



To recover Eq. (S4), we make use of the following consequences of the equalities R =
E[N ]/N and M = βN . First, we note that CV2

R = CV2
1/N . Second, we can repurpose

our power series expansion above for N instead of β and see that E[R] = E[N ]E[N−1] ≈
1 + CV2

N . Finally, since β and N are independent, we can say that (1 + CV2
N )(1 + CV2

β) =

(1 + CV2
βN ) = 1 + CV2

M .

F.2.2 Technical noise weakens observed gene-gene correlations

Technical noise may either weaken pairwise correlations between genes, or spuriously
generate correlations through normalization. If two genes are sampled unevenly, their re-
lationship in the sample may look quite different from their relationship in the original pool.
Moreover, correlation is sensitive to scale – two low-abundance genes are much more likely
to seem uncorrelated than two highly abundant genes. The equation we develop here helps
us understand more formally how sampling and noise in sampling weaken correlations that
we observe between genes through their UMIFM read counts corr(m̂i, m̂j). Here we con-
sider only the case of total count normalization. We begin with the definition of the correlation
coefficient,

corr(m̂i, m̂j) =
Cov(m̂i, m̂j)√

Var(m̂i)Var(m̂j)
,

and rewrite this expression in terms of CVs:

corr(m̂i, m̂j) =
Cov(m̂i, m̂j)

E[m̂i]E[m̂j ]

1

CVm̂i
CVm̂j

=
C̃(m̂i, m̂j)

CVm̂i
CVm̂j

,

where C̃ is the normalized covariance. The connection between corr(m̂i, m̂j) and corr(ni, nj)
becomes apparent once we realize that

C̃(m̂i, m̂j) = (1 + CV 2
1/N )C̃(ni, nj) + CV 2

1/N , (S10)

which follows from the fact that E[m̂im̂j ] = E[β]2E[ninj ]E[R2]. We are reminded that nor-
malization by a noisy quantity (in this case 1/N ) can spuriously inflate positive covariances,
and eliminate weak negative covariances (or inflate them if C̃(ni, nj) < −1). From Eq. (S10)
it follows that

corr(m̂i, m̂j) = corr(ni, nj)
CVniCVnj

CVm̂i
CVm̂j

(1 + CV 2
1/N ) +

CV 2
1/N

CVm̂i
CVm̂j

. (S11)

To develop an intuition for the effects of sampling on gene-gene correlations, we assume
that the variability between droplets in total counts CV1/N is small, as is the case for undif-
ferentiated ES cells. Then, using Eq. (S4) to relate CVni,j to CVm̂i,j

, Eq. (S11) becomes,

corr(m̂i, m̂j) = corr(ni, nj)αiαj , (S12)

αk∈{i,j} =

√(
1− 1 + CV2

M − E[β]

Fm̂k

)
where Fm̂ = Var(m̂)/E[m̂] is the expected value of the observed gene Fano factor. To obtain
Eq. (S12), we make use of the relationship

CVn

CVm̂
=

√
Var(n)
E[n]

E[m̂]

Var(m̂)

E[m̂]

E[n]
=

√
Fn
Fm̂

E[β]E[R],
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and then relate Fn and Fm̂ by multiplying Eq. (S4) by E[m̂].

Note that the degree to which technical noise dampens the correlation between genes
i and j is sensitive to the mean expression levels of both genes and to the sampling effi-
ciency through the Fano factors. Since sampling efficiency is low, E[β] � 1, and we can
approximate Eq. (S12) in terms of observable quantities only as

corr(m̂i, m̂j) ≈ corr(ni, nj)

√[
1− F−1m̂i

(1 + CV2
M )

][
1− F−1m̂j

(1 + CV2
M )

]
,

giving Eq. (3) in Fig. 2G of the main text.

F.3 Identifying highly variable genes

A key goal of our data analysis is to identify genes whose expression in a population
of cells is highly variable. More precisely, we wish to identify genes whose abundances
are significantly over-dispersed relative to a Poisson distribution, which would result from
uniform, non-fluctuating expression of transcripts in all cells. In this analysis, we use a test
statistic that, at any given mean gene expression level, gives more weight to genes whose
CV is many times larger than that of a Poisson random variable with the same mean. Based
on Eq. (S4), a reasonable proposal for a test statistic, v, is:

v =
CV2

m̂(
1 + CV2

M

) (
1 + CV2

1/N

)/
E[m̂] + CV2

1/N

(S13)

By defining v in this way, we make concrete precisely what we do when we identify outliers by
eye on a plot of genes’ CV versus mean abundance such as Fig. 2F. The additive constant
noise term CV2

1/N keeps us from identifying a gene as highly variable in a population of cells

if we can attribute much of that variability to differences in cell size. We infer CV2
1/N from the

data; for the ES cell data, CV1/N ranges from ∼ 20% on Day 0 to ∼ 35% on Day 7 post-Lif
withdrawal. For our RNA controls CV1/N is much smaller – typically on the order of 5%,
consistent with CV1/N describing variability in total mRNA content per droplet. For both cells
and RNA controls we calculate CVM directly from the data; its values for the ES cell data are
given in Table S1. The test statistic proposed here is similar to that proposed previously in
(Brennecke et al., 2013), but with two key differences. First, here there is just one parameter
to be inferred from the data CV 2

1/N , not two; second, we tested and found that the empirical

distribution of v is not a χ2 distribution as proposed in that study.

To develop a test for variability, we need a null distribution that describes the possible
spread in v given that a gene’s counts across cells are actually Poisson-distributed. For this
purpose one may calculate v for a set of pure RNA controls, allowing for different values of
CV1/N and CVM in each sample. One can then compute a p-value for each ES cell gene
by comparing its v-score to the reference distribution, and thus test how many genes are
significantly variable using Benjamini and Hochberg’s method to control the false discovery
rate (FDR).
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